Original Articles
85. Reversible photocontrol of microtubule stability by Spiropyran-conjugated Tau-derived peptides.
Hiroshi Inaba, Minamo Sakaguchi, Soei Watari, Shigesaburo Ogawa, Arif Md. Rashedul Kabir, Akira Kakugo, Kazuki Sada, Kazunori Matsuura.
ChemBioChem, 2023, e202200782; DOI: 10.1002/cbic.202200782.
84. Generation of stable microtubule superstructures by binding of peptide-fused tetrameric proteins to inside and outside.
Hiroshi Inaba, Yurina Sueki, Muneyoshi Ichikawa, Arif Md. Rashedul Kabir, Takashi Iwasaki, Hideki Shigematsu, Akira Kakugo, Kazuki Sada, Tomoya Tsukazaki, Kazunori Matsuura.
Science Advances, 2022, 8, eabq3817; DOI: 10.1126/sciadv.abq3817.
83. Light-induced stabilization of microtubules by photocrosslinking of Tau-derived peptide.
Soei Watari, Hiroshi Inaba, Tomonori Tamura, Arif Md. Rashedul Kabir, Akira Kakugo, Kazuki Sada,
Itaru Hamachi, Kazunori Matsuura.
Chemical Communications, 2022, 58, 9190-9193; DOI: 10.1039/D2CC01890J.
82. Tau forms straight and unbranched neurites by inducing rigid microtubules compared to MAP2
and MAP4.
Kohei Nishida, Kosuke Matsumura, Miki Tamura, Masahiro Kuragano, Arif Md. Rashedul Kabir, Akira Kakugo, Kiyotaka Tokuraku.
Submitted (under review), 2022, XXX, XXX.
81. Collision-induced torque mediates the transition of chiral dynamic patterns formed by active particles.
Tetsuya Hiraiwa, Ryo Akiyama, Daisuke Inoue, Arif Md. Rashedul Kabir, Akira Kakugo.
Physical Chemistry Chemical Physics, 2022, 24, 28782-28787; DOI: 10.1039/d2cp03879j.
80. Kinesin motors driven microtubule swarming triggered by UV light.
Satsuki Ishii, Mousumi Akter, Keiji Murayama, Arif Md. Rashedul Kabir, Hiroyuki Asanuma, Kazuki Sada, Akira Kakugo.
Polymer Journal, 2022, DOI: 10.1038/s41428-022-00693-1.
79. Fluctuation in the sliding movement of kinesin-driven microtubules is regulated using the deep-sea osmolyte trimethylamine N-oxide.
Arif Md. Rashedul Kabir,* Tasrina Munmun, Kazuki Sada, Akira Kakugo. (*corresponding author)
ACS Omega, 2022, 7, 18597-18604; DOI: 10.1021/acsomega.2c01228.
78. Cooperative cargo transportation by a swarm of molecular machines.
Mousumi Akter, Jakia Jannat Keya, Kentaro Kayano, Arif Md. Rashedul Kabir, Daisuke Inoue, Henry Hess, Kazuki Sada, Akinori Kuzuya, Hiroyuki Asanuma, Akira Kakugo.
Science Robotics, 2022, 7, DOI: 10.1126/scirobotics.abm0677.
77. Structural changes of microtubules by encapsulation of gold nanoparticles using a Tau-derived peptide.
Hiroshi Inaba, Arif Md. Rashedul Kabir, Akira Kakugo, Kazuki Sada, Kazunori Matsuura.
Chemistry Letters, 2022, 51, 348-351; DOI: 10.1246/cl.210761.
76. Controlling the rigidity of kinesin-propelled microtubules in an in vitro gliding assay using the deep-sea osmolyte triethylamine N-oxide.
Arif Md. Rashedul Kabir,* Tasrina Munmun, Tomohiko Hayashi, Satoshi Yasuda, Atsushi P. Kimura, Masahiro Kinoshita, Takeshi Murata, Kazuki Sada, Akira Kakugo. (*corresponding author)
ACS Omega, 2022, 7, 3796-3803; DOI: 10.1021/acsomega.1c06699.
75. Controlling collective motion of kinesin-driven microtubules via patterning of topographic landscapes.
Shunya Araki, Kazusa Beppu, Arif Md. Rashedul Kabir, Akira Kakugo, Yusuke T. Maeda.
Nano Letters, 2021, 21, 10478–10485; DOI: 10.1021/acs.nanolett.1c03952.
74. Deformation of microtubules regulates translocation dynamics of kinesin.
Syeda Rubaiya Nasrin, Christian Ganser, Seiji Nishikawa, Arif Md. Rashedul Kabir, Kazuki Sada, Takefumi Yamashita, Mitsunori Ikeguchi, Takayuki Uchihashi, Henry Hess, Akira Kakugo.
Science Advances, 2021, 7, eabf2211; DOI: 10.1126/sciadv.abf2211.
73. Monopolar flocking of microtubules in collective motion.
Farhana Afroze, Daisuke Inoue, Tamanna Ishrat Farhana, Tetsuya Hiraiwa, Ryo Akiyama, Arif Md. Rashedul Kabir, Kazuki Sada, Akira Kakugo.
Biochemical and Biophysical Research Communications, 2021, 563, 73-78; DOI: 10.1016/j.bbrc.2021.05.037.
72. Controlling the length of self-assembled microtubes through mechanical stress-induced scission.
Arif Md. Rashedul Kabir, Kazuki Sada, Akira Kakugo.
Chemical Communications, 2021, 57, 468-471; DOI: 10.1039/D0CC07327J.
71. Cyclic Tau-derived peptides for stabilization of microtubules.
Hiroshi Inaba, Miyuu Nagata, Kyeongmi Juliano Miyake, Arif Md. Rashedul Kabir, Akira Kakugo, Kazuki Sada, Kazunori Matsuura.
Polymer Journal, 2020, 52, 1143-1151; DOI: 10.1038/s41428-020-0356-3.
70. Comparison of microtubules stabilized with the anticancer drugs cevipabulin and paclitaxel.
Syeda Rubaiya Nasrin, Tsukasa Ishihara, Arif Md. Rashedul Kabir, Akihiko Konagaya, Kazuki Sada,
Akira Kakugo.
Polymer Journal, 2020, 52, 969-976; DOI: 10.1038/s41428-020-0334-9.
69. Mechanical Stimulation‐Induced Orientation of Gliding Microtubules in Confined Microwells.
Daisuke Inoue Arif Md. Rashedul Kabir, Kiyotaka Tokuraku, Kazuki Sada, Akira Kakugo.
Advanced Materials Interfaces, 2020, 7, 1902013; DOI: 10.1002/admi.201902013.
68. Magnetic force-induced alignment of microtubules by encapsulation of CoPt nanoparticles using a Tau- derived peptide.
Hiroshi Inaba, Mayuki Yamada, Mst. Rubaya Rashid, Arif Md. Rashedul Kabir, Kazuki Sada, Akira Kakugo, Kazunori Matsuura.
Nano Letters, 2020, 20, 5251-5258; DOI: 10.1021/acs.nanolett.0c01573.
67. Effect of microtubule immobilization by glutaraldehyde on kinesin-driven cargo transport.
Syeda Rubaiya Nasrin, Arif Md. Rashedul Kabir, Kazuki Sada, Akira Kakugo.
Polymer Journal, 2020, 52, 655-660; DOI: 10.1038/s41428-020-0309-x.
66. Radial alignment of microtubules through tubulin polymerization in an evaporating droplet.
Jakia Jannat Keya, Hiroki Kudoh, Arif Md. Rashedul Kabir, Daisuke Inoue, Nobuyoshi Miyamoto, Tomomi Tani, Akira Kakugo, Kazuhiro Shikinaka.
PLOS One, 2020, 15, e0231352; DOI: 10.1371/journal.pone.0231352.
65. Breaking of buckled microtubules is mediated by kinesins.
Arif Md. Rashedul Kabir, Kazuki Sada, Akira Kakugo.
Biochemical and Biophysical Research Communications, 2020, 524, 249-254; DOI:10.1016/j.bbrc.2020.01.082.
64. Regulation of biomolecular-motor-driven cargo transport by microtubules under mechanical stress.
Syeda Rubaiya Nasrin, Tanjina Afrin, Arif Md. Rashedul Kabir, Daisuke Inoue, Takayuki Torisawa, Kazuhiro Oiwa, Kazuki Sada, Akira Kakugo.
ACS Applied Bio Materials, 2020, 3, 1875-1883; DOI:10.1021/acsabm.9b01010.
63. Complete, rapid and reversible regulation of the motility of a nano-biomolecular machine using an
osmolyte trimethylamine-N-oxide.
Tasrina Munmun,* Arif Md. Rashedul Kabir,* Kazuki Sada, Akira Kakugo (*co-first author).
Sensors and Actuators B: Chemical, 2020, 304, 127231; DOI: 10.1016 / j.snb.2019.127231.
62. Photo-regulated trajectories of gliding microtubules conjugated with DNA.
Mousumi Akter, Jakia Jannat Keya, Arif Md. Rashedul Kabir, Hiroyuki Asanuma, Keiji Murayama, Kazuki Sada, Akira Kakugo.
Chemical Communications, 2020, 56, 7953-7956; DOI: 10.1039/D0CC03124K.
61. Controlling the kinetics of interaction between microtubules and kinesins over a wide temperature range
using the deep-sea osmolyte trimethylamine N-oxide.
Tasrina Munmun,* Arif Md. Rashedul Kabir,* Kazuki Sada, Akira Kakugo. (*co-first author)
Chemical Communications, 2020, 56, 1187-1190; DOI: 10.1039/C9CC09324A.
60. Adaptation of patterns of motile filaments under dynamic boundary conditions.
Daisuke Inoue, Greg Gutmann, Takahiro Nitta, Arif Md.Rashedul Kabir, Akihiko Konagaya, Kiyotaka Tokuraku,
Kazuki Sada, Henry Hess, Akira Kakugo.
ACS Nano, 2019, 13, 12452-12460; DOI: 10.1021/acsnano.9b01450.
59. Stabilization of microtubules by cevipabulin.
Syeda Rubaiya Nasrin, Arif Md.Rashedul Kabir, Akihiko Konagaya, Tsukasa Ishihara, Kazuki Sada,
Akira Kakugo.
Biochemical and Biophysical Research Communications, 2019, 516, 760-764; DOI:10.1016/j.bbrc.2019.06.095.
58. Stabilization of microtubules by encapsulation of the GFP using a Tau-derived peptide.
Hiroshi Inaba, Takahisa Yamamoto, Takashi Iwasaki, Arif Md.Rashedul Kabir, Akira Kakugo, Kazuki Sada, Kazunori Matsuura.
Chemical Communications, 2019, 55, 9072-9075; DOI:10.1039/C9CC04345D.
57. Artificial smooth muscle model composed of hierarchically ordered microtubule asters mediated by
DNA origami nanostructures.
Kento Matsuda,* Arif Md. Rashedul Kabir,* Naohide Akamatsu, Ai Saito, Shumpei Ishikawa, Tsuyoshi Matsuyama, Oliver Ditzer, Md. Sirajul Islam, Yuichi Ohya, Kazuki Sada, Akihiko Konagaya, Akinori Kuzuya, Akira Kakugo. (*co-first author)
Nano Letters, 2019, 6, 3933-3938; DOI:10.1021/acs.nanolett.9b01201.
56. Fluorescent Tau-derived peptide for monitoring microtubules in living cells.
Hiroshi Inaba, Takahisa Yamamoto, Takashi Iwasaki, Arif Md.Rashedul Kabir, Akira Kakugo, Kazuki Sada, Kazunori Matsuura.
ACS Omega, 2019, 4, 11245-11250; DOI: 10.1021/acsomega.9b01089.
55. Controlling the length of microtubules by manipulating their polymerization conditions.
Arif Md.Rashedul Kabir, Akira Kakugo.
ECS Transactions, 2018, 88, 15-21; DOI: 10.1149/08801.0015ecst.
54. Liquid crystalline colloidal mixture of nanosheets and rods with dynamically variable length.
Riki Kato, Akira Kakugo, Kazuhiro Shikinaka, Yutaka Ohsedo, Arif Md. Rashedul Kabir, Nobuyoshi Miyamoto.
ACS Omega, 2018, 11, 14869-14874; DOI: 10.1021/acsomega.8b01050.
53. Molecular encapsulation inside microtubules based on tau-derived peptides.
Hiroshi Inaba, Takahisa Yamamoto, Arif Md. Rashedul Kabir, Akira Kakugo, Kazuki Sada, Kazunori Matsuura.
Chemistry-A European Journal, 2018, 24, 14958-14967; DOI: 10.1002/chem.201802617.
52. Control of swarming of molecular robots.
Jakia Jannat Keya, Arif Md. Rashedul Kabir, Daisuke Inoue, Kazuki Sada, Henry Hess, Akinori Kuzuya,
Akira Kakugo.
Scientific Reports, 2018, 8, 1-10; DOI: 10.1038/s41598-018-30187-1.
51. Construction of artificial cilia from microtubules and kinesins through a well-designed bottom-up approach.
Ren Sasaki,* Arif Md. Rashedul Kabir,* Daisuke Inoue, Shizuka Anan, Atsushi P. Kimura, Akihiko Konagaya,
Kazuki Sada, Akira Kakugo. (*co-first author)
Nanoscale, 2018, 10, 6323-6332; DOI: 10.1039/C7NR05099B.
50. DNA-assisted swarm control in a biomolecular motor system.
Jakia Jannat Keya, Ryuhei Suzuki, Arif Md. Rashedul Kabir, Daisuke Inoue, Hiroyuki Asanuma, Kazuki Sada, Henry Hess, Akinori Kuzuya, Akira Kakugo.
Nature Communications, 2018, 9, 453: 1-8; DOI: 10.1038/s41467-017-02778-5.
49. Motility of microtubules on the inner surface of water-in-oil emulsion droplets.
Mikako Tsuji, Arif Md. Rashedul Kabir, Masaki Ito, Daisuke Inoue, Kenta Kokado, Kazuki Sada, Akira Kakugo.
Langmuir, 2017, 33, 12108-12113; DOI: 10.1021/acs.langmuir.7b01550.
48. High-resolution imaging of a single gliding protofilament of tubulins by HS-AFM.
Jakia Jannat Keya, Daisuke Inoue, Yuki Suzuki, Toshiya Kozai, Daiki Ishikuro, Noriyuki Kodera, Takayuki Uchihashi, Arif Md. Rashedul Kabir, Masayuki Endo, Kazuki Sada, Akira Kakugo.
Scientific Reports, 2017, 7, 6166: 1-7; DOI: 10.1038/s41598-017-06249-1.
47. Understanding the emergence of collective motion of microtubules driven by kinesins: role of concentration of microtubules and depletion force.
Ai Saito, Tamanna Ishrat Farhana, Arif Md. Rashedul Kabir, Daisuke Inoue, Akihiko Konagaya, Kazuki Sada, Akira Kakugo.
RSC Advances, 2017, 7, 13191-13197; DOI: 10.1039/C6RA27449H.
46. Role of confinement in the active self-organization of kinesin-driven microtubules.
Md. Sirajul Islam, Kaori Kuribayashi-Shigetomi, Arif Md. Rashedul Kabir, Daisuke Inoue, Kazuki Sada,
Akira Kakugo.
Sensors and Actuators B: Chemical, 2017, 247, 53-60; DOI: 10.1016/j.snb.2017.03.006.
45. Buckling of microtubules on elastic media via breakable bonds.
Tanjina Afrin, Arif Md. Rashedul Kabir, Kazuki Sada, Akira Kakugo, Takahiro Nitta.
Biochemical and Biophysical Research Communications, 2016, 480, 132-138; DOI: 10.1016/j.bbrc.2016.09.133.
44. Construction and gilding of metal-organic frameworks and microtubule conjugates.
Masaki Ito, Takumi Ishiwata, Shizuka Anan, Kenta Kokado, Daisuke Inoue, Arif Md. Rashedul Kabir,
Akira Kakugo, Kazuki Sada.
ChemistrySelect, 2016, 1, 5358-5362; DOI: 10.1002/slct.201601431.
43. A photoregulated ATP generation system for in vitro motility assay.
Arif Md. Rashedul Kabir, Masaki Ito, Kyohei Uenishi, Shizuka Anan, Akihiko Konagaya, Kazuki Sada,
Miwa Sugiura, Akira Kakugo.
Chemistry Letters, 2016, 46, 178-180; DOI: 10.1246/cl.160903.
42. Sensing surface mechanical deformation using active probes driven by motor proteins.
Daisuke Inoue, Takahiro Nitta, Arif Md. Rashedul Kabir, Kazuki Sada, Jian Ping Gong, Akihiko Konagaya,
Akira Kakugo.
Nature Communications, 2016, 7, 12557: 1-10; DOI: 10.1038/ncomms12557.
41. Mechanical oscillation of dynamic microtubule rings.
Masaki Ito,* Arif Md. Rashedul Kabir,* Md. Sirajul Islam, Daisuke Inoue, Shoki Wada, Kazuki Sada,
Akihiko Konagaya, Akira Kakugo. (*co-first author)
RSC Advances, 2016, 73, 69149-69155; DOI: 10.1039/C6RA16613J.
40. Enhanced dynamic instability of microtubules in a ROS free inert environment.
Md. Sirajul Islam, Arif Md. Rashedul Kabir, Daisuke Inoue, Kazuki Sada, Akira Kakugo.
Biophysical Chemistry, 2016, 211, 1-8; DOI: 10.1016/j.bpc.2015.11.003.
39. Buckling of microtubules on a 2D elastic medium.
Arif Md. Rashedul Kabir, Daisuke Inoue, Tanjina Afrin, Hiroyuki Mayama, Kazuki Sada, Akira Kakugo.
Scientific Reports, 2015, 5, 1-12; DOI: 10.1038/srep17222.
38. Depletion force induced collective motion of microtubules driven by kinesin.
Daisuke Inoue, Bulbul Mahmot, Arif Md. Rashedul Kabir, Tamanna Ishrat Farhana, Kiyotaka Tokuraku,
Kazuki Sada, Akihiko Konagaya, Akira Kakugo.
Nanoscale, 2015, 7, 18054-18061; DOI: 10.1039/C5NR02213D.
37. Drag force on micron-sized objects with different surface morphologies in a flow with a small Reynolds number.
Arif Md. Rashedul Kabir, Daisuke Inoue, Yuri Kishimoto, Jun-ichi Hotta, Keiji Sasaki, Noboru Kitamura,
Jian Ping Gong, Hiroyuki Mayama, Akira Kakugo.
Polymer Journal, 2015, 47, 564-570; DOI: 10.1038/pj.2015.29.
36. Controlling the bias of rotational motion of ring-shaped microtubule assembly.
Shoki Wada,* Arif Md. Rashedul Kabir,* Ryuzo Kawamura, Masaki Ito, Daisuke Inoue, Kazuki Sada,
Akira Kakugo. (*co-first author)
Biomacromolecules, 2015, 16, 374-378; DOI: 10.1021/bm501573v.
35. Effect of length and rigidity of microtubules on the size of ring-shaped assemblies obtained through active self-organization.
Shoki Wada,* Arif Md. Rashedul Kabir,* Masaki Ito, Daisuke Inoue, Kazuki Sada, Akira Kakugo.
(*co-first author)
Soft Matter, 2015, 11, 1151-1157; DOI: 10.1039/C4SM02292K.
34. Biomolecular motor modulates mechanical property of microtubule.
Arif Md. Rashedul Kabir, Daisuke Inoue, Yoshimi Hamano, Hiroyuki Mayama, Kazuki Sada, Akira Kakugo.
Biomacromolecules, 2014, 15, 1797-1805; DOI: 10.1021/bm5001789.
33. Formation of ring-shaped microtubule assemblies through active self-organization on dynein.
Masaki Ito, Arif Md. Rashedul Kabir, Daisuke Inoue, Takayuki Torisawa, Yoko Toyoshima, Kazuki Sada,
Akira Kakugo.
Polymer Journal, 2014, 46, 220-225; DOI: 10.1038/pj.2013.89.
32. Growth of ring-shaped microtubule assemblies through stepwise active self-organization.
Daisuke Inoue, Arif Md. Rashedul Kabir, Hiroyuki Mayama, Akira Kakugo, Kazuki Sada, Jian Ping Gong.
Soft Matter, 2013, 9, 7061-7068; DOI: 10.1039/C3SM50704A.
31. Formation of ring-shaped assembly of microtubules with a narrow size distribution at an
air-buffer interface.
Arif Md. Rashedul Kabir, Shoki Wada, Daisuke Inoue, Yoshiki Tamura, Tamaki Kajihara, Hiroyuki Mayama, Kazuki Sada, Akira Kakugo, Jian Ping Gong.
Soft Matter, 2012, 8, 10863-10867; DOI: 10.1039/C2SM26441B.
30. Active self-organization of microtubules in an inert chamber system.
Arif Md. Rashedul Kabir, Daisuke Inoue, Akira Kakugo, Kazuki Sada, Jian Ping Gong.
Polymer Journal, 2012, 44, 607-611; DOI: 10.1038/pj.2012.26.
29. Prolongation of the active lifetime of a biomolecular motor for in vitro motility assay by using an
inert atmosphere.
Arif Md. Rashedul Kabir, Daisuke Inoue, Akira Kakugo, Akiko Kamei, Jian Ping Gong.
Langmuir, 2011, 27, 13659-13668; DOI: 10.1021/la202467f.
28. Controlled clockwise-counterclockwise motion of the ring-shaped microtubules assembly.
Akira Kakugo, Arif Md. Rashedul Kabir, Natsuki Hosoda, Kazuhiro Shikinaka, Jian Ping Gong.
Biomacromolecules, 2011, 12, 3394-3399; DOI: 10.1021/bm200829t.
27. Kinetics of the alkaline hydrolysis of crystal violet in aqueous solution influenced by anionic surfactants.
Arif Md. Rashedul Kabir, Md. Abu Bin Hasan Susan.
Journal of Saudi Chemical Society, 2008, 12, 543-554.
Review Articles
26. A new approach to explore the mechanoresponsiveness of microtubules and its application in studying dynamic soft interfaces.
Arif Md. Rashedul Kabir,* Akira Kakugo. (*corresponding author)
Polymer Journal, 2021, 53, 299-308; DOI: 10.1038/s41428-020-00415-5.
25. Molecular swarm robots: recent progress and future challenges.
Arif Md. Rashedul Kabir, Daisuke Inoue, Akira Kakugo.
Science and Technology of Advanced Materials, 2020, 21, 323-332; DOI: 10.1080/14686996.2020.1761761.
24. Synchronous operation of biomolecular engines.
Jakia Jannat Keya, Arif Md. Rashedul Kabir, Akira Kakugo.
Biophysical Reviews, 2020, 12, 401-409; DOI: 10.1007/s12551-020-00651-2.
23. Study of active self-assembly using biomolecular motors.
Arif Md. Rashedul Kabir, Akira Kakugo.
Polymer Journal, 2018, 50, 1139-1148; DOI: 10.1038/s41428-018-0109-8.
22. Preparation of biomolecular robots.
Ryuhei Suzuki, Arif Md. Rashedul Kabir, Kazuki Sada, Akira Kakugo.
Journal of Oleo Science, 2017, 17, 49-53; DOI: 10.5650/oleoscience.17.49.
21. Cytoskeletal motor-driven active self-assembly in in vitro systems.
Amy Tsui-Chi Lam, Virginia VanDelinder, Arif Md. Rashedul Kabir, Henry Hess, George Bachand,
Akira Kakugo.
Soft Matter, 2016, 12, 988-997; DOI: 10.1039/C5SM02042E.
20. Biomolecular motor modulates mechanical property of microtubules.
Ren Sasaki, Arif Md. Rashedul Kabir, Akira Kakugo.
Biophysics, 2015, 55, 259-261; DOI: 10.2142/biophys.55.259.
19. Assembly of biomolecular motor obtained through active self-organization and that practicality.
Daisuke Inoue, Masaki Ito, Arif Md. Rashedul Kabir, Akira Kakugo, and Kazuki Sada.
Chemical Industry, 2012, 63, 449-452; NII NACSIS-CAT ID (NCID): AN00037245.
18. How to integrate biological motors towards bio-actuators fueled by ATP.
Arif Md. Rashedul Kabir, Akira Kakugo, Jian Ping Gong, Yoshihito Osada.
Macromolecular Bioscience, 2011, 11, 1314-1324; DOI: 10.1002/mabi.201100060.
Book Chapters
17. Construction of Swarm-Type Molecular Robots Driven by Biomolecular Motors.
Arif Md. Rashedul Kabir, Akira Kakugo.
Molecular Robotics, Springer Singapore, 2022, pp. 195-214,
16. Mechanical deformation of microtubules on a two-dimensional elastic medium.
Syeda Rubaiya Nasrin, Farhana Afroze, Arif Md. Rashedul Kabir, Akira Kakugo.
Microtubules-Methods and Protocols, Methods in Molecular Biology, Springer Nature, 2022, pp. 303-314,
15. Cargo transport by microtubule-associated motor protein along mechanically deformed microtubules.
Syeda Rubaiya Nasrin, Arif Md. Rashedul Kabir, Akira Kakugo.
Microtubules-Methods and Protocols, Methods in Molecular Biology, Springer Nature, 2022, pp. 291-302,
14. Functionalization of tubulin: approaches to modify tubulin with biotin and DNA.
Mousumi Akter, Jakia Jannat Keya, Arif Md. Rashedul Kabir, Mst. Rubaya Rashid, Satsuki Ishii, Akira Kakugo.
Microtubules-Methods and Protocols, Methods in Molecular Biology, Springer Nature, 2022, pp. 47-59,
13. Fabrication of artificial muscle from microtubules, kinesins, and DNA origami nanostructures.
Jakia Jannat Keya, Mousumi Akter, Arif Md. Rashedul Kabir, Satsuki Ishii, Akira Kakugo.
Microtubules-Methods and Protocols, Methods in Molecular Biology, Springer Nature, 2022, pp. 231-240,
12. Construction of molecular robots from microtubules for programmable swarming.
Jakia Jannat Keya, Mousumi Akter, Arif Md. Rashedul Kabir, Mst. Rubaya Rashid, Akira Kakugo.
Microtubules-Methods and Protocols, Methods in Molecular Biology, Springer Nature, 2022, pp. 219-230,
11. Dynamic pattern formation of active matters triggered by mechanical stimuli.
Jakia Jannat Keya, Mousumi Akter, Arif Md. Rashedul Kabir, Akira Kakugo.
Microtubules-Methods and Protocols, Methods in Molecular Biology, Springer Nature, 2022, pp. 193-203,
10. Molecular actuators and their applications in molecular robotics.
Arif Md. Rashedul Kabir, Yoshiyuki Kageyama, Akira Kakugo.
9. Biomolecular motor-based computing.
Arif Md. Rashedul Kabir, Akira Kakugo.
8. Molecular swarm robotics: challenges and prospects for the future.
Arif Md. Rashedul Kabir, Akira Kakugo.
ROBOT 100, Eva Dibuszová, Center for Information Services,
7. Integration of soft actuators based on a biomolecular motor system to develop artificial machines.
Jakia Jannat Keya, Kentaro Kayano, Arif Md. Rashedul Kabir, Akira Kakugo.
Soft Actuators: Materials, Modeling, Applications, and Future Perspectives, Springer, Singapore; 2019,
pp. 691-709, DOI: 10.1007/978-981-13-6850-9_39.
6. ATP-driven bio-machine.
Daisuke Inoue, Arif Md. Rashedul Kabir, Kazuki Sada, Jian Ping Gong, Akira Kakugo.
Soft Actuators: Materials, Modeling, Applications, and Future Perspectives, Springer, Japan; 2014,
pp. 475-487, DOI: 10.1007/978-4-431-54767-9_34.
Conference Papers
5. Microrheology of microtubule aqueous solution.
Kazutaka Satou, Daisuke Takeuchi, Syuzi Fujii, Hiroshi Orihara, Kentarou Kayano, Arif Md. Rashedul Kabir,
Ituki Kunita, Akira Kakugo.
Biophysical Journal, 2018, 114(3):506a, DOI: 10.1016/j.bpj.2017.11.2765.
4. Formation of shear band in a microtubule solution.
Kei Hamasaki, Daisuke Takeuchi, Shuji Fujii, Hiroshi Orihara, Katsuhiko Sato, Itsuki Kunita, Kentaro Kayano,
Arif Md. Rashedul Kabir, Akira Kakugo.
Biophysical Journal, 2018, 114(3):506a, DOI: 10.1016/j.bpj.2017.11.2765.
3. An in vitro system for confinement of microtubules on patterned surface.
Md. Sirajul Islam, Kaori Kuribayashi-Shigetomi, Arif Md. Rashedul Kabir, Daisuke Inoue, Kazuki Sada,
Akira Kakugo.
The 27th Biofrontier Lecture, The Japan Society of Mechanical Engineers, 2016, 27,
DOI: 10.1299/jsmebiofro.2016.27. A205.
2. Intelligence of reconstructed biomolecular motor system.
Daisuke Inoue, Arif Md. Rashedul Kabir, Akira Kakugo.
Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS) on 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS), 2016, pp. 381-382, DOI: 10.4108/eai.3-12-2015.2262588.
1. Kinetic investigation on the alkaline hydrolysis of crystal violet in the presence of
sodium dodecylbenzenesulfonate.
Arif Md. Rashedul Kabir, Md. Abu Bin Hasan Susan.
Proceedings of Bangladesh Chemical Congress, 2006, pp. 89-97.